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DESCRIPTION OF A FLOW OF A GAS-CONDENSATE MIXTURE

IN AN AXISYMMETRIC CAPILLARY TUBE

BY THE DENSITY-FUNCTIONAL METHOD

UDC 532.546O. Yu. Dinariev

An isothermal flow of a two-phase multicomponent mixture through a small-diameter capillary tube
is examined by the density-functional method. For low ratios of the characteristic radius of the cap-
illary to its length, a general form of the dominating term in the asymptotic solution is found. An
improved version of the law of mixture transfer is obtained. The form of possible corrections to the
Darcy law for the filtration rates of the phases is discussed.
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For gas-condensate and oil-and-gas fields, a situation is typical in which the native hydrocarbon mixture
undergoes a liquid–gas phase transition. During field development, the gas and the liquid move in the pore space
of the rock, interacting with the rock and with each other owing to hydrodynamic viscous-friction forces and owing
to the exchange by mixture components during the phase transition. The macroscopic description of the flow of a
two-phase mixture in a porous medium obeys the Darcy filtration law [1]

uag = −kg(s)
µg

(∂apg + ρg∂aϕ), ualiq = −kliq(s)
µliq

(∂apliq + ρliq∂aϕ), (1)

where uag and ualiq are the filtration rates of the gas and hydrocarbon liquid (condensate or oil), pg and pliq are the
gas pressure and liquid pressure, ρg and ρliq are the mass densities of the gas and liquid, µg and µliq are the shear
viscosities of the gas and liquid, kg(s) and kliq(s) are the phase permeabilities of the rock, which depend on the
saturation degree of the liquid s, and ϕ is the gravity potential.

The classical filtration law (1) takes into account the friction between the moving phases and the rock. It is
of interest to improve the filtration law by making allowance for possible cross-terms involving pressure gradients
in the phases and standing to describe the friction between the moving phases and the inertial effects.

In the present work, we consider the problem of a steady-state isothermal flow of a multicomponent two-
phase mixture in an axisymmetric capillary tube. The hydrodynamic description of the system is based on the
density-functional method [2–5], which needs no a priory setting of the spatial positions of interfaces between the
phases. For the flow in a small-diameter axisymmetric capillary, the dominating term of the asymptotic solution
in the form of a series expansion in powers of the characteristic tube radius-to-length ratio is found. Based on the
data obtained, we discuss the form of possible corrections in expressions (1) for the filtration rates of the phases.

We are going first to reproduce the fundamental equations used to describe a multicomponent mixture within
the density-functional approach in an isothermal case [2]. The gravity forces are assumed to be negligibly weak.

Let the multicomponent mixture occupy a certain domain D in space with a smooth boundary ∂D. The
subscripts i, j, and k refer to component numbers and take the values 1, . . . ,M (M is the total number of all
components in the mixture). The subscripts a, b, and c refer to Cartesian coordinates xa. Summation over repeated
indices is implied.
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We consider only isothermal processes and introduce the following notations: ni and mi are the molar
density and molar mass of the ith component, ρ = mini is the mass density of the mixture, Iia is the flux of the ith
component, va = ρ−1miIia is the mean-mass velocity of the mixture, Qia = Iia − niva is the diffusion flux, pab is
the symmetrical strain tensor of the mixture, ∂t = ∂/∂t and ∂a = ∂/∂xa are derivatives with respect to time and
coordinate, g,i = ∂g/∂ni, and g is the density function of the components.

The flow of the mixture is defined by the conservation equations for the mixture components and momentum
[6]:

∂tni + ∂aIia = 0; (2)

ρ(∂tva + vb∂bva) = ∂bpab. (3)

The boundary conditions have the form

va

∣∣∣
∂D

= 0, laQia

∣∣∣
∂D

= 0, (4)

where la is the internal normal to the surface ∂D.
To close problem (2)–(4), we need explicit expressions for the diffusion fluxes Qia and stress tensor pab of

the mixture. To derive these expressions, we use the free energy of the mixture, defined as a density functional [2]

F =
∫
D

θv dV +
∫
∂D

θs dA. (5)

Here θv = (1/2)νij ∂ani ∂anj + f , f(ni) is the free energy on the homogeneous state in unit volume, θs(ni) is the
surface energy of the interface between the mixture and the solid phase (surface tension), and νij is a positively
defined symmetrical matrix whose elements, for simplicity, are assumed to be independent of the densities ni.

The representation of the free energy as a functional of form (5) was first proposed in [7] and subsequently
used in treating many problems [8, 9].

It was shown [2] that, in a static case, the theory based on expression (5) admits representation of
equilibrium-state parameters of a multiphase system as continuous functions. Introducing squared density gra-
dients into expression (5), one can consider some interface regions with continuously varying problem parameters
instead of geometric surfaces between dissimilar phases.

In the static case, the equilibrium states of the mixture correspond to critical points of functional (5) with
preset amounts of each component in the mixture [2]:

Ni =
∫
D

ni dV . (6)

Hence, the necessary condition of equilibrium can be written as a variational equation

δF − λi δNi = 0, (7)

where λi are the Lagrange multipliers. Calculating the variation of functional (5) explicitly, we obtain

δF =
∫
D

Φi δni dV +
∫
∂D

ψi δni dA,

(8)

Φi = f,i − νij ∆nj , ψi = θs,i − νij la ∂anj , ∆ = ∂a ∂a.

In this way, the variational equations (7) are reduced to an elliptical system of differential equations

Φi − λi = 0 (9)

with boundary conditions

ψi = 0. (10)

The unknown Lagrange multipliers λi are to be found from known values of Ni [see (6)]. Since the value of
f,i equals the chemical potential of the ith component, the Lagrange multipliers for homogeneous states equal the
chemical potentials of the mixture components.

Returning to the dynamic equations, we assume that, in the dynamic case, the boundary conditions (10)
also hold.
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Next, we introduce into the present consideration the kinetic energy of the mixture

K =
1
2

∫
D

ρvava dV.

Using (2)–(4), (8), and (10), we can easily calculate the derivative of the total energy of the mixture
E = K + F :

dE

dt
=
∫
D

(−τab ∂avb +Qia ∂aΦi) dV ;

τab = pab − σab, σab = −νij ∂ani ∂bnj + δab(θv − Φini). (11)

The tensors σab and τab are interpreted as the static-strain tensor and the viscous-stress tensor, respectively. In other
words, the matrix σab describes stresses in a spatially nonuniform mixture, independent of flow parameters. In a
spatially uniform medium, the matrix σab reduces to ordinary stresses in an ideal liquid σab = −pδab (p = f,ini−f is
the hydrostatic pressure).

The expressions for the viscous-stress tensor τab of the diffusion fluxes Qia should be consistent with the
condition of dissipativity of the model dE/dt 6 0. The simplest (but nonunique) way to meet this condition is to
use the Navier–Stokes model for viscous stresses and the generalized Fick law for diffusion:

τab = (ζ − 2µ/3)δab ∂cvc + µ(∂avb + ∂bva); (12)

Qia = −Dij ∂aΦj . (13)

Here ζ(ni) and µ(ni) are the positive coefficients of volume and shear viscosities of the mixture, Dij(nk) is the
symmetrical matrix of diffusion coefficients with nonnegative eigenvalues (the only zero eigenvalue of this matrix
corresponds to the eigenvector mi).

Let us verify the consistency between the static equations (9) and the hydrodynamic equations (2), (3), (12),
and (13). We can conveniently use the following, easy-to-check equality:

∂bσab = −ni ∂aΦi. (14)

Let conditions (9) be fulfilled and the mean-mass velocity be zero. Substitution of relations (9) into (13)
shows that the diffusion fluxes are zero and the conservation equations for components (2) are satisfied. In this
case, the momentum equations (3) are also satisfied by virtue of identity (14).

Vice versa, let the mean-mass velocity and the diffusion fluxes be zero. Then, Eq. (13) yields the equality
Φi = Φi0 +miψ, where Φi0 are constants and ψ is some function of the coordinates. It follows from the condition
of equilibrium ∂bσab = 0 and equality (14) that ψ is a constant. Thus, the validity of (9) is proved.

Let us examine now the flow of a multicomponent mixture through an axisymmerical capillary tube of
variable radius. We use the following cylindrical coordinates: z is the coordinate along the capillary axis, r is the
distance from the axis, and θ is the azimuthal angle. The capillary radius is defined as a function r = rc(z). The
unknown quantities in this problem are the density fields ni(z, r) and the velocity fields vz(z, r) and vr(z, r).

The hydrodynamic equations (2) and (3) reduce to the system of equations

∂z(nivz +Qiz) + (∂r + r−1)(nivr +Qir) = 0; (15)

ρ(vz∂z + vr∂r)vz = ∂zpzz + (∂r + r−1)pzr,
(16)

ρ(vz∂z + vr∂r)vr = ∂zpzr + (∂r + r−1)prr − r−3pθθ,

in which, in accordance with relations (11)–(13), the expressions for the diffusion fluxes of stress-tensor components
have the form

Qiz = −Dij ∂zΦj , Qir = −Dij ∂rΦj ,

pzz = −νij ∂zni ∂znj + θv − Φini + (ζ + 4µ/3)∂zvz + (ζ − 2µ/3)(∂rvr + r−1vr),

prr = −νij ∂rni ∂rnj + θv − Φini + (ζ − 2µ/3)(∂zvz + r−1vr) + (ζ + 4µ/3)∂rvr,
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pθθ = r2(θv − Φini) + (ζ − 2µ/3)r2(∂zvz + ∂rvr) + (ζ + 4µ/3)rvr,

pzr = prz = −νij ∂rni ∂znj + µ(∂zvr + ∂rvz),

θv = νij(∂zni∂znj + ∂rni∂rnj)/2 + f, Φi = f,i − νij(∂2
znj + r−1∂r(r ∂rnj)).

The boundary conditions on the capillary walls r = rc(z) follow from relations (4) and (10):

vr = 0, vz = 0, Qir = 0, νij ∂rnj = θs,i. (17)

The boundary conditions at the capillary axis (r = 0) follow from the symmetry of the problem and flow
continuity:

vr = 0, ∂rvz = 0, Qir = 0, ∂rni = 0. (18)

Equation (15) yields the ordinary continuity equation

∂z(ρvz) + (∂r + r−1)(ρvr) = 0, (19)

and also the integral conservation laws

dqi
dz

= 0, qi = 2π

rc∫
0

(nivz +Qiz)r dr. (20)

Here qi is the total flux of the ith component through the capillary tube.
In addition to the boundary conditions (7) and (18), boundary conditions at the ends of the capillary tube

need to be formulated. These conditions will be given below, when constructing the solution of interest.
We assume that the coordinate z varies from 0 to L > 0 and Rc is the characteristic radius of the capillary

tube. We can conveniently introduce the small parameter δ = Rc/L and the dimensionless coordinates x = z/L

and y = r/Rc. We also introduce the dimensionless capillary radius R(x) = R−1
c rc(z). For simplicity, we use the

system of units in which L = 1.
To construct the asymptotic solution containing the small parameter δ, we have to set the order of the sought

quantities with respect to δ. Here, the governing equations and the boundary conditions, which relate the sought
quantities, should be fulfilled. Physically, the sought asymptotics describes the flow in a fixed-length capillary of
infinitely small radius. In this case, we have to choose the order of the parameters νij and θs,i, which determine the
thickness of surface layers and interphase zones [2, 3], and also the order of diffusivities. We use the expressions

νij = δ2αij , θs,i = δβi, Dij = δ2dij(nk), (21)

where αij and βi are some finite constants. We represents the sought quantities as series:

ni =
+∞∑
α=0

δαnαi (x, y), vz = δ2
+∞∑
α=0

δαvαz (x, y), vr = δ2
+∞∑
α=0

δαvαr (x, y). (22)

Substitution of relations (21) and (22) into the boundary conditions (17) and (18) defines the boundary
conditions for the dominating terms in the asymptotic solution:
— for y = R(x),

v0
r = 0, v0

z = 0, (23)

dij(n0
k) ∂yΦ0

j = 0, (24)

αij ∂yn
0
j = βi; (25)

— for y = 0,
v0
r = 0, ∂yv

0
z = 0, (26)

dij(n0
k) ∂yΦ0

j = 0, (27)

∂yn
0
i = 0. (28)

Here Φ0
i = f,i(n0

k)− αijy−1 ∂y(y∂yn0
j ).
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In the major approximation, Eq. (19) yields the ordinary differential equation (∂y+y−1)(min
0
i v

0
r) = 0, whose

integral has the form min
0
i v

0
r = y−1C1(x). The latter expression is consistent with the boundary conditions (23)

and (26) only if C1(x) = 0. Thus, we have

v0
r = 0. (29)

Invoking (14) and (29), from (15) and (16) we obtain the following equations:

(∂y + y−1)(dij(n0
k) ∂yΦ0

j ) = 0; (30)

−n0
i ∂zΦ

0
i + (∂y + y−1)(µ(n0

k) ∂yv0
z) = 0; (31)

−n0
i ∂yΦ0

i = 0. (32)

Relations (24), (27), (30), and (32) are valid if the values of Φ0
i do not depend on the radial coordinate y, i.e., if

the following equations hold:
Φ0
i = λi(x). (33)

A comparison of system (33) with the equilibrium conditions (9) makes it possible to interpret (33) as a
condition for an equilibrium distribution of the mixture components in the capillary cross section. Thus, system (33)
with the boundary conditions (25) and (28) defines the densities of the mixture components n0

i = n0
i (x, y). In

fact, the dependence of n0
i on the longitudinal coordinate x can be expressed through the dependence of the

parameters λi and capillary radius R on x. Therefore, the densities of the mixture components can be represented
as the functions n0

i = n0
i (y;R, λj). The parameters λi(x) should be considered as local chemical potentials of the

mixture.
The particular functional form of the solution n0

i = n0
i (y;R, λj) of problem (33) with the boundary con-

ditions (25) and (28) is defined by the used free-energy function of the homogeneous state f(ni). Usually, the
description of real hydrocarbon mixtures employs semi-empirical cubic equations of state [10, 11]. In this case,
the analytical expressions for the function f(ni) turn out to be too complex, thus, excluding the possibility of
calculating the functions n0

i (y;R, λj) in a final analytical form. Therefore, generally, to solve problem (33), (25),
and (28), one has to employ some numerical algorithms. Yet, as it will be shown below, an analytical consideration
of the problem of the flow of a gas-condensate mixture in an axisymmetric capillary tube yields several results of
utmost importance.

We introduce the functions Ji(y;R, λj) defined by the equation

y−1 ∂y(yµ0 ∂yJi) = −n0
i (34)

and the boundary conditions

Ji|y=R = 0, ∂yJi|y=0 = 0,

where µ0(y;R, λj) = µ(n0
i (y;R, λj)). The functions Ji(y;R, λj) can be found as double integrals:

Ji(y;R, λj) =

R∫
y

(y2µ
0(y2;R, λj))−1

y2∫
0

y1n
0
i (y1;R, λj) dy1 dy2.

A comparison between Eqs. (31) and (34) readily gives the following expression for the longitudinal velocity
of the flow: v0

z(x, y) = −Ji dλi/dx. Substitution of this expression into (20) yields the major asymptotics of the
fluxes of the mixture components in the form qi = δ2q0

i , where

q0
i = −Ψij

dλj
dx

, Ψij(y;R, λk) = 2π

R∫
0

(n0
iJj +Dij(n0

k))y dy. (35)

The matrix Ψij is symmetric and positively defined:

Ψij = 2π

R∫
0

[
(yµ0(y;R, λk))−1

y∫
0

y1n
0
i (y1;R, λk) dy1

y∫
0

y2n
0
j (y2;R, λk) dy2 + dij(n0

k(y;R, λk))
]
y dy. (36)

Thus, the transfer law (35) satisfies the Onsager theory.
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The equations of conservation of the mixture components dq0
i /dx = 0 and the transfer law (35) form a

system of second-order ordinary differential equations for the chemical potentials of the mixture λi(x) along the
capillary. The values of λi at the ends of the capillary can be used as boundary conditions.

Transfer law (35) is a general one irrespective to whether the mixture is in a single-phase or in a two-phase
state. If the mixture is in a two-phase state and the zone of the transition between the phases is narrow compared
to the capillary radius (so that the radius y = τ for the interface between the phases can be introduced), then a
more accurate formulation of law (35) in terms of the phase filtration velocities is possible. Let the liquid phase be
a wetting one (i. e., the liquid resides near the capillary walls), n0

ig and n0
il be the densities of the components in

the gas and in the liquid, and dijg = dij(n0
kg) and dijl = dij(n0

kl) be the reduced diffusivities in the gas and in the
liquid. Dividing the integration domain in expression (36) into subregions occupied by the gas and by the liquid
and using the Gibbs–Duhem relations dpg = n0

ig dλi and dpliq = n0
il dλi, we bring law (35) to the form

q0
i = qig + qil, qig = πR2

(
n0
igug −

( τ
R

)2

dijg
dλj
dx

)
, qil = πR2

(
n0
iluliq −

(
1−

( τ
R

)2)
dijl

dλj
dx

)
;

ug = −R2
(Σ1

µg
+

Σ2

µliq

)dpg

dx
− R2Σ3

µliq

dpliq

dx
, uliq = −R

2Σ4

µliq

dpg

dx
− R2Σ5

µliq

dpliq

dx
; (37)

Σ1 =
1
8

( τ
R

)4

, Σ2 = −1
2

( τ
R

)4

ln
τ

R
, Σ3 = Σ4 =

1
4

( τ
R

)2(
1−

( τ
R

)2

+ 2
( τ
R

)2

ln
τ

R

)
,

Σ5 =
1
8

(
1−

( τ
R

)2)2

− 1
4

( τ
R

)2(
1−

( τ
R

)2

+ 2
( τ
R

)2

ln
τ

R

)
.

Expressions (37) give a generalization of expressions (1) for the filtration rates of the phases. It should be
noted that these expressions contain cross-terms, i. e., the gas filtration rate depends on the pressure gradient in
the liquid, and vice versa, the liquid filtration rate depends on the pressure gradient in the gas. The quantities
R2ΣA have the meaning of phase permeabilities. With the mutual friction of the phases taken into account, we
have here four independent coefficients instead of the two coefficients in the classical law (1). For real porous media,
the analytical expressions for the phase permeabilities are more evolved and depend on particular properties of the
rock. Nevertheless, the functional form of the filtration law should correspond to expressions (37).
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